Constraints on perturbative RG flows in six dimensions
When conformal field theories (CFTs) are perturbed by marginally relevant deformations, renormalization group (RG) flows ensue that can be studied with perturbative methods, at least as long as they remain close to the original CFT. In this work we study such RG flows in the vicinity of six-dimensional unitary CFTs. Neglecting effects of scalar operators of dimension two and four, we use Weyl consistency conditions to prove the alpha-theorem in perturbation theory, and establish that scale implies conformal invariance. We identify a quantity that monotonically decreases in the flow to the infrared due to unitarity, showing that it does not agree with the one studied recently in the literature on the six-dimensional O-3 theory.
WOS:000381218500001
2016
8
010
REVIEWED