Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. SORI: A softness-rendering interface to unravel the nature of softness perception
 
research article

SORI: A softness-rendering interface to unravel the nature of softness perception

Mete, Mustafa  
•
Jeong, Haewon
•
Wang, Wei Dawid
Show more
March 26, 2024
Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS)

Tactile perception of softness serves a critical role in the survival, well-being, and social interaction among various species, including humans. This perception informs activities from food selection in animals to medical palpation for disease detection in humans. Despite its fundamental importance, a comprehensive understanding of how softness is neurologically and cognitively processed remains elusive. Previous research has demonstrated that the somatosensory system leverages both cutaneous and kinesthetic cues for the sensation of softness. Factors such as contact area, depth, and force play a particularly critical role in sensations experienced at the fingertips. Yet, existing haptic technologies designed to explore this phenomenon are limited, as they often couple force and contact area, failing to provide a real -world experience of softness perception. Our research introduces the softness -rendering interface (SORI), a haptic softness display designed to bridge this knowledge gap. Unlike its predecessors, SORI has the unique ability to decouple contact area and force, thereby allowing for a quantitative representation of softness sensations at the fingertips. Furthermore, SORI incorporates individual physical fingertip properties and model -based softness cue estimation and mapping to provide a highly personalized experience. Utilizing this method, SORI quantitatively replicates the sensation of softness on stationary, dynamic, homogeneous, and heterogeneous surfaces. We demonstrate that SORI accurately renders the surfaces of both virtual and daily objects, thereby presenting opportunities across a range of fields, from teleoperation to medical technology. Finally, our proposed method and SORI will expedite psychological and neuroscience research to unlock the nature of softness perception.

  • Details
  • Metrics
Type
research article
DOI
10.1073/pnas.2314901121
Web of Science ID

WOS:001206415900003

Author(s)
Mete, Mustafa  
•
Jeong, Haewon
•
Wang, Wei Dawid
•
Paik, Jamie  
Date Issued

2024-03-26

Publisher

National Academy of Sciences

Published in
Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS)
Volume

121

Issue

13

Article Number

e2314901121

Subjects

Softness

•

Display

•

Perception

•

Tactile

•

Haptics

Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
RRL  
FunderGrant Number

Swiss National Center of Competence in Research Robotics

MOTIE (Ministry of Trade, Industry, and Energy) in Korea, under the Human Resource Development Program for Industrial Innovation (Global)

P0017306

Available on Infoscience
May 1, 2024
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/207741
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés