Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Directly fabricated multi-scale microlens arrays on a hydrophobic flat surface by a simple ink-jet printing technique
 
research article

Directly fabricated multi-scale microlens arrays on a hydrophobic flat surface by a simple ink-jet printing technique

Kim, Joo Yeon  
•
Pfeiffer, Karl
•
Voigt, Anja
Show more
2012
Journal of Materials Chemistry

A shape-tunable approach is demonstrated for the fabrication of multi-scale polymer microlenses ([small mu ]-lenses) and microlens arrays (MLAs) using an ink-jet printing (IJP) technique. Also, the influence of the surface wetting conditions on the geometrical and optical characteristics of the printed [small mu ]-lenses is investigated. A photo-curable organic-inorganic hybrid polymeric resist (H-resist) is used; it is printed on a hydrophobic-treated glass substrate with different number of drops per [small mu ]-lens and cured using an ultraviolet lamp (UV lamp). High quality [small mu ]-lenses and MLAs with good uniformity and reproducibility were fabricated. The lens diameters and heights were controllable by changing the number of H-resist drops together with tuning the surface wetting conditions; these shape changes affect the optical properties of the [small mu ]-lenses and MLAs such as the numerical aperture (NA) and focal distance (f), as well as the f-number (f#), which indicates the light-gathering power. The optical properties of the tunable [small mu ]-lenses and MLAs are very attractive for application in optical systems such as interconnects and pixelated imagine sensors that use CCD or SPAD arrays, offering an efficient, simple and cheap alternative to the conventionally used photolithography technique.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2012 Directly fabricated multi-scale microlens arrays on a hydrophobic flat surface by simple ink-jet printing technique.pdf

Access type

restricted

Size

453.06 KB

Format

Adobe PDF

Checksum (MD5)

97a7f138ee63819dacbb48ce19b4643c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés