Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Silicon nitride electric-field poled microresonator modulator
 
Loading...
Thumbnail Image
research article

Silicon nitride electric-field poled microresonator modulator

Zabelich, Boris  
•
Lafforgue, Christian  
•
Nitiss, Edgars  
Show more
2024
APL Photonics

Stoichiometric silicon nitride is a highly regarded platform for its favorable attributes, such as low propagation loss and compatibility with complementary metal-oxide-semiconductor technology, making it a prominent choice for various linear and nonlinear applications on a chip. However, due to its amorphous structure, silicon nitride lacks second-order nonlinearity; hence, the platform misses the key functionality of linear electro-optical modulation for photonic integrated circuits. Several approaches have been explored to address this problem, including integration with electro-optic active materials, piezoelectric tuning, and utilization of the thermo-optic effect. In this work, we demonstrate electro-optical modulation in a silicon nitride microring resonator enabled by electric-field poling, eliminating the complexities associated with material integration and providing data modulation speeds up to 75 Mb/s, currently only limited by the electrode design. With an estimated inscribed electric field of 100 V/μm, we achieve an effective second-order susceptibility of 0.45 pm/V. In addition, we derive and confirm the value of the material’s third-order susceptibility, which is responsible for the emergence of second-order nonlinearity. These findings broaden the functionality of silicon nitride as a platform for electro-optic modulation.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

016101_1_5.0173507.pdf

Type

Publisher

Access type

openaccess

License Condition

CC BY

Size

5.44 MB

Format

Adobe PDF

Checksum (MD5)

74ec2689753756f125edf4f35e88f334

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés