Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Extent-based Model Identification of Surface Catalytic Reaction Systems
 
conference paper

Extent-based Model Identification of Surface Catalytic Reaction Systems

Chhabra, Vibhuti
•
Rodrigues, Diogo  
•
Srinivasan, Sriniketh  
Show more
2014
Chimia
Annual Meeting of the Swiss Chemical Society (SCS)

Identification of kinetic models and estimation of reaction and mass-transfer parameters is an important task for monitoring, control and optimization of industrial processes. A methodology called Extent-based Model Identification has been developed to separate the effects of reaction, mass transfer, and inlet and outlet flows for homogeneous and gas-liquid reaction systems. The decoupled effects, called extents, are used to decompose the model identification task incrementally into sub-problems of lower complexity, in which measured data are first transformed into extents and these extents are then modeled individually [1-3]. <br><br> For the analysis of surface catalytic reaction systems, it is important to separate the coupled effects of transport phenomena and reactions. Therefore, the methodology of Extent-based Model Identification has been extended to gas-solid and gas-liquid-solid systems involving catalytic processes at the surface of a solid catalyst, described by Langmuir-Hinshelwood types of kinetic models. <br><br> From measurements in the fluid and solid phases, the extent of each individual dynamic process is computed. A model is postulated for that process and the corresponding extent is simulated and compared with the computed extent. This procedure allows performing model identification and parameter estimation individually for each phenomenon and species (diffusion of substrates and products, adsorption of substrates, desorption of products and solid-phase reactions). <br><br> [1] Bhatt et al., <i>Ind. & Eng. Chem. Res.</i>, <b>2011</b>, 50, 12960-12974 <br> [2] Srinivasan et al., <i>Chem. Eng. J.</i>, <b>2012</b>, 208, 785-793 <br> [3] Billeter et al., <i>Anal. Chim. Acta</i>, <b>2013</b>, 767, 21-34

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Abstract SCS 2014.pdf

Access type

openaccess

Size

8.8 KB

Format

Adobe PDF

Checksum (MD5)

711999930cccb8e7e711c96795c66f45

Loading...
Thumbnail Image
Name

Chhabra et al. Annual Meeting of SCS.pdf

Access type

openaccess

Size

4.1 MB

Format

Adobe PDF

Checksum (MD5)

01289566c7d1e3a5c112c2926c40b763

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés