Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Efficiently Maintaining Distributed Model-Based Views on Real-Time Data Streams
 
conference paper

Efficiently Maintaining Distributed Model-Based Views on Real-Time Data Streams

Arion, Petre Alexandru  
•
Jeung, Ho Young  
•
Aberer, Karl  
2011
Proceedings of the Global Communications Conference, GLOBECOM 2011
Global Communications Conference, GLOBECOM 2011

Minimizing communication cost is a fundamental problem in large-scale federated sensor networks. Maintaining model-based views of data streams has been highlighted because it permits efficient data communication by transmitting parameter values of models, instead of original data streams. We propose a framework that employs the advantages of using model-based views for communication-efficient stream data processing over federated sensor networks, yet it significantly improves state-of-the-art approaches. The framework is generic and any time-parameterized models can be plugged, while accuracy guarantees for query results are ensured throughout the large-scale networks. In addition, we boost the performance of the framework by the coded model update that enables efficient model update from one node to another. It predetermines parameter values for the model, updates only identifiers of the parameter values, and compresses the identifiers by utilizing bitmaps. Moreover, we propose a correlation model, named coded inter-variable model, that merges the efficiency of the coded model update with that of correlation models. Empirical studies with real data demonstrate that our proposal achieves substantial amounts of communication reduction, outperforming state-of-the art methods.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

06133764.pdf

Access type

openaccess

Size

604.27 KB

Format

Adobe PDF

Checksum (MD5)

365b12d90fa14e07ae6fa7cd004f76bb

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés