Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Systematic design of millisecond gasification reactor for the incorporation of gas-sieving nanopores in single-layer graphene
 
research article

Systematic design of millisecond gasification reactor for the incorporation of gas-sieving nanopores in single-layer graphene

Huang, Shiqi
•
Li, Shaoxian
•
Hsu, Kuang-Jung
Show more
July 15, 2021
Journal of Membrane Science

Etching an ensemble of vacancy defects (nanopores) in single-layer graphene (SLG) to obtain a high density of nanopores with an effective size that enables high-performance gas sieving is challenging. This is because nanopore nucleation and expansion are usually coupled. Aggressive etching conditions that promote defect nucleation are difficult to control for limiting the pore expansion. To address this, we recently reported a millisecond gasification reactor (MGR) that allows aggressive etching and at the same time restricts the pore expansion time to a few milliseconds. Herein, we systematically analyze various components of the MGR setup and achieve optimal conditions based on a mathematical model simulating the etchant exposure profile in MGR. We study the effect of the etching conditions such as baseline pressure, peak pressure, and exposure time, on the defect formation in SLG via Raman spectroscopy. Nanopores formed at different etching temperatures are observed by scanning tunneling microscope, revealing the relationship between the etching temperature and the pore density. The incorporation of nanopores in SLG under the optimized conditions allows the realization of extremely attractive CO2-sieving performances from the nanoporous SLG (NSLG) membranes, marked by CO2 permeance of 900–4000 gas permeation units (GPU) and CO2/N2 selectivity of 17–25. This study establishes MGR as a highly tunable etching tool for incorporating the desired ensemble of nanopores in graphene for a number of important molecular separations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S0376738821005743-main.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-ND

Size

5.25 MB

Format

Adobe PDF

Checksum (MD5)

7e60d5387e0ab861a3b2d17a91a657be

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés