Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Phase Analysis of the Stretching Cycles of the Head of Unsteady Gravity Currents Developing over Smooth and Rough Beds
 
conference paper

Phase Analysis of the Stretching Cycles of the Head of Unsteady Gravity Currents Developing over Smooth and Rough Beds

Nogueira, Helena  
•
Adduce, Claudia
•
Alves, Elsa
Show more
2013
Proceedings of 35th IAHR World Congress
35th IAHR World Congress

Gravity currents are buoyancy driven flows occurring spontaneously in nature or resulting from human intervention. Examples of gravity currents in the water are oceanic fronts, resulting from differences in temperature and salinity, and turbidity currents caused by high concentration of suspended particles. The release of pollutant materials into rivers, oil spillage in the ocean and desalination plant outflows are examples of anthropogenic gravity currents in the water, frequently with negative environmental impacts. The present work experimentally investigates the dynamics of unsteady gravity currents produced by lock-release of a saline mixture into a fresh water tank. Seven different experimental runs were performed by varying e density of the saline mixture in the lock and the bed roughness. The experiments were conducted in a 3.0 m long Perspex flume, of horizontal bed and rectangular cross section of 0.20 x 0.30 m2, and recorded with a 25 Hz CCD video camera. An image analysis technique was applied to visualize and characterize the current allowing the detailed analysis of the gravity current dynamics and more specifically of the head dynamics. The temporal evolution of variables assessed at the head of the gravity current i.e. length, surface, volume and mass, per unit width, shows repeated cycles of stretching and break of the head. During the stretching phase, ambient fluid is entrained into the head causing its growth. However this is not unlimited, a limit in which the head becomes unstable and consequently breaks exists. There is a strong similarity in the head aspect ratio, of maximum head height to length, and mass between the cycles and between runs, thus a phase lumped analysis within the periodically well-behaved cycles is presented in terms of head aspect ratio, head mass and mass rate. In the instants of head break, the head aspect ratio shows a consistent limit of 0.2, for all runs, and the mass of the head is of the order of the initial mass in the lock. Regarding the periodicity of the break events, it is seen to increase with bed roughness. Entrainment at the head is evaluated through mass rate and is seen to occur during all the stages of the current development.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

A10750_1.pdf

Access type

openaccess

Size

1.81 MB

Format

Adobe PDF

Checksum (MD5)

3867a2264354807199a8d6c9b8e18bcd

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés