Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Infrared spectroscopy of hydrated amino acids in the gas phase: protonated and lithiated valine
 
Loading...
Thumbnail Image
research article

Infrared spectroscopy of hydrated amino acids in the gas phase: protonated and lithiated valine

Kamariotis, A.  
•
Boyarkin, O. V.  
•
Mercier, S. R.
Show more
2006
Journal of the American Chemical Society

We report here infrared spectra of protonated and lithiated valine with varying degrees of hydration in the gas phase and interpret them with the help of DFT calculations at the B3LYP/6-31++G** level. In both the protonated and lithiated species, our results clearly indicate that the solvation process is first driven by solvation of the charge site and subsequently by formation of a second solvation shell. The infrared spectra of Val•Li+(H2O)4 and Val•H+(H2O)4 are strikingly similar in the region of the spectrum corresponding to hydrogen-bonded stretches of donor water molecules, suggesting that in both cases similar extended water structures are formed once the charge site is solvated. In the case of the lithiated species, our spectra are consistent with a conformation change of the amino acid backbone from the syn to anti accompanied by a change in the lithium binding from NO coordination to OO coordination configuration upon addition of the third water molecule. This change in the mode of metal ion binding was also observed previously by Williams and Lemoff [J. Am. Soc. Mass Spectrom. 2004, 15, 1014-1024] using blackbody infrared radiative dissociation (BIRD). In contrast to the zwitterion formation inferred from results of the BIRD experiments upon the addition of a third water molecule, our spectra, which are a more direct probe of structure, show no evidence for zwitterion formation with the addition of up to four water molecules.

  • Details
  • Metrics
Type
research article
DOI
10.1021/ja056079v
Web of Science ID

WOS:000234815000055

Author(s)
Kamariotis, A.  
•
Boyarkin, O. V.  
•
Mercier, S. R.
•
Beck, Rainer D.  
•
Bush, M. F.
•
Williams, E. R.
•
Rizzo, T. R.  
Date Issued

2006

Published in
Journal of the American Chemical Society
Volume

128

Start page

905

Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LCPM  
Available on Infoscience
December 15, 2005
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/221366
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés