Recovery of clustered sparse signals from compressive measurements
We introduce a new signal model, called (K,C)-sparse, to capture K-sparse signals in N dimensions whose nonzero coefficients are contained within at most C clusters, with C < K << N. In contrast to the existing work in the sparse approximation and compressive sensing literature on block sparsity, no prior knowledge of the locations and sizes of the clusters is assumed. We prove that O (K + C log(N/C))) random projections are sufficient for (K,C)-model sparse signal recovery based on subspace enumeration. We also provide a robust polynomialtime recovery algorithm for (K,C)-model sparse signals with provable estimation guarantees.
Recovery of clustered sparse signals from compressive measurements.pdf
openaccess
128.82 KB
Adobe PDF
f5acf46dc99c7eabfb2fc84d77487ef5