Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. An Implementation of a Spike-Response Model with Escape Noise Using an Avalanche Diode
 
research article

An Implementation of a Spike-Response Model with Escape Noise Using an Avalanche Diode

Clayton, T.
•
Cameron, K.
•
Rae, B. R.
Show more
2011
IEEE Transactions on Biomedical Circuits and Systems

This paper introduces a novel probabilistic spike-response model through the combination of avalanche diode-generated Poisson distributed noise, and a standard exponential decay-based spike-response curve. The noise source, which is derived from a 0.35- m single-photon avalanche diode (kept in the dark), was tested experimentally to verify its characteristics, before being combined with a field-programmable gate-array implementation of a spike-response model. This simple model was then analyzed, and shown to reproduce seven of eight behaviors recorded during an extensive study of the ventral medial hypothalamic (VMH) region of the brain. It is thought that many of the cell types found within the VMH are fed from a tonic noise synaptic input, where the patterns generated are a product of their spike response and not their interconnection. This paper shows how this tonic noise source can be modelled, and due to the independent nature of the noise sources, provides an avenue for the exploration of networks of noise-fueled neurons, which play a significant role in pattern generation within the brain.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

charbon11tbcas.pdf

Access type

openaccess

Size

1.75 MB

Format

Adobe PDF

Checksum (MD5)

d20ea8091fb647c6df3a9a6a73824a7c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés