Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Mixture of time scales in land-atmosphere interaction: Desorption and self-similarity of energy fluxes
 
research article

Mixture of time scales in land-atmosphere interaction: Desorption and self-similarity of energy fluxes

Porté-Agel, F.  
•
Parlange, M. B.  
•
Cahill, A. T.
Show more
2000
Agronomy Journal

The time evolution of evaporation from a bare soil, over a 9-d period following irrigation, is described by a combination of daily and hourly drying patterns. From the second day, the daily evaporation shows a second stage of drying that can be described as a desorptive process (evaporation proportional to (t - to)-1/2, where t is time in days and to is the day when the second stage starts). The short time (hourly) evaporation rate can be modeled on the basis of a type of self-similarity in the energy balance components. Combining the evaporative flux behavior at the two time scales, desorption at the daily timescale and self-similarity for the diurnal variations, a robust description of evaporation for drying land surfaces is obtained. This approach is tested using accurate measurements of the different com-ponents of the energy balance at the soil surface, obtained at 20-min intervals. The model accurately describes the time evolution of the evaporative flux and could be used for the disaggregation of daily or weekly evaporation into hourly values.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Mixture of time scales.pdf

Access type

openaccess

Size

633.65 KB

Format

Adobe PDF

Checksum (MD5)

8e009b9f17fe62f2cbdccd64431d2c61

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés