Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells
 
Loading...
Thumbnail Image
research article

GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells

Haller, C.  
•
Carlin, J. -F.  
•
Jacopin, G.  
Show more
September 10, 2018
Applied Physics Letters

Blue light-emitting diodes based on III-nitride semiconductors are nowadays widely used for solid-state lighting. They exhibit impressive figures of merit like an internal quantum efficiency close to 100%. This value is intriguing when considering the high dislocation density running throughout the InGaN/GaN quantum well (QW) active region. This striking feature is currently ascribed to carrier localization occurring in the InGaN alloy, which hinders their diffusion toward dislocations. However, it was recently reported that another source of defects, disconnected from dislocations, dramatically decreases the radiative efficiency of InGaN/GaN QWs. Those defects, present at the surface, are usually trapped in an InGaN underlayer (UL), which is grown before the QW active region. To get insight into the trapping mechanism, we varied the UL thickness, In content, and materials system (InGaN or InAlN) and studied the photoluminescence decay time at 300 K of a single InGaN/GaN QW. Our data demonstrate that defects are incorporated proportionally to the indium content in the UL. In addition, we show that those defects are created during the high-temperature growth of GaN and that they segregate at the surface even at low-temperature. Eventually, we propose an intrinsic origin for these surface defects. (C) 2018 Author(s).

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1.5048010.pdf

Type

Publisher's Version

Access type

openaccess

License Condition

CC BY

Size

1.16 MB

Format

Adobe PDF

Checksum (MD5)

708ac68145a05538f5069e883e58f5a0

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés