Phase diagram of the spin-1 Heisenberg model with three-site interactions on the square lattice
We study the spin S = 1 antiferromagnetic Heisenberg model on the square lattice with, in addition to the nearest-neighbor interaction, a three-site interaction of the form (S-i . S-j)(S-j . S-k) + H.c. This interaction appears naturally in a strong coupling expansion of the two-orbital, half-filled Hubbard model. For spin 1/2, this model reduces to a Heisenberg model with bilinear interactions up to third neighbors, with a second-neighbor interaction twice as large as the third-neighbor one, a very frustrated model with an infinite family of helical classical ground states in a large parameter range. Using a variety of analytical and numerical methods, we show that the spin-1 case is also very frustrated, and that its phase diagram is even richer, with possibly the succession of seven different phases as a function of the ratio of the three-site interaction to the bilinear one. The phases are either purely magnetic phases with collinear order or of mixed magnetic and quadrupolar character with helical order.
PhysRevB.88.094435.pdf
openaccess
513.16 KB
Adobe PDF
f6ec9ef9079851f1ee684927aacd712e