Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Protective coatings on extensible biofibres
 
research article

Protective coatings on extensible biofibres

Holten-Andersen, N.
•
Fantner, G. E.  
•
Hohlbauch, S.
Show more
2007
Nature Materials

Formulating effective coatings for use in nano- and biotechnology poses considerable technical challenges(1). If they are to provide abrasion resistance, coatings must be hard and adhere well to the underlying substrate(2). High hardness, however, comes at the expense of extensibility(3,4). This property trade-off makes the design of coatings for even moderately compliant substrates problematic, because substrate deformation easily exceeds the strain limit of the coating(5). Although the highest strain capacity of synthetic fibre coatings is less than 10%, deformable coatings are ubiquitous in biological systems(3,6). With an eye to heeding the lessons of nature, the cuticular coatings of byssal threads from two species of marine mussels, Mytilus galloprovincialis and Perna canaliculus, have been investigated. Consistent with their function to protect collagenous fibres in the byssal-thread core, these coatings show hardness and stiffness comparable to those of engineering plastics and yet are surprisingly extensible; the tensile failure strain of P. canaliculus cuticle is about 30% and that of M. galloprovincialis is a remarkable 70%. The difference in extensibility is attributable to the presence of deformable microphase-separated granules within the cuticle of M. galloprovincialis. The results have important implications in the design of bio-inspired extensible coatings.

  • Details
  • Metrics
Type
research article
DOI
10.1038/nmat1956
Web of Science ID

WOS:000249236200021

Author(s)
Holten-Andersen, N.
Fantner, G. E.  
Hohlbauch, S.
Waite, J. H.
Zok, F. W.
Date Issued

2007

Published in
Nature Materials
Volume

6

Issue

9

Start page

669

End page

672

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LBNI  
Available on Infoscience
November 5, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/56732
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés