Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Gold nanoparticles functionalised with fast water exchanging Gd3+ chelates: linker effects on the relaxivity
 
research article

Gold nanoparticles functionalised with fast water exchanging Gd3+ chelates: linker effects on the relaxivity

Ferreira, Miguel F.
•
Goncalves, Janaina
•
Mousavi, Bibimaryam  
Show more
2015
Dalton Transactions

The relaxivity displayed by Gd3+ chelates immobilized onto gold nanoparticles is the result of the complex interplay between the nanoparticle size, the water exchange rate and the chelate structure. In this work we study the effect of the length of omega-thioalkyl linkers, anchoring fast water exchanging Gd3+ chelates onto gold nanoparticles, on the relaxivity of the immobilized chelates. Gold nanoparticles functionalized with Gd3+ chelates of mercaptoundecanoyl and lipoyl amide conjugates of the DO3A-N-(alpha-amino) propionate chelator were prepared and studied as potential CA for MRI. High relaxivities per chelate, of the order of magnitude 28-38 mM(-1) s(-1) (30 MHz, 25 degrees C), were attained thanks to simultaneous optimization of the rotational correlation time and of the water exchange rate. Fast local rotational motions of the immobilized chelates around connecting linkers (internal flexibility) still limit the attainable relaxivity. The degree of internal flexibility of the immobilized chelates seems not to be correlated with the length of the connecting linkers. Biodistribution and MRI studies in mice suggest that the in vivo behavior of the gold nanoparticles was determined mainly by size. Small nanoparticles (HD = 3.9 nm) undergo fast renal clearance and avoidance of the RES organs while larger nanoparticles (HD = 4.8 nm) undergo predominantly hepatobiliary excretion. High relaxivities, allied to chelate and nanoparticle stability and fast renal clearance in vivo suggest that functionalized gold nanoparticles hold great potential for further investigation as MRI contrast agents. This study contributes to a better understanding of the effect of linker length on the relaxivity of gold nanoparticles functionalized with Gd3+ complexes. It is a relevant contribution towards "design rules" for nanostructures functionalized with Gd3+ chelates as Contrast Agents for MRI and multi-modal imaging.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

JCSDalton44-4016.pdf

Type

Publisher's Version

Version

Published version

Access type

restricted

Size

2.48 MB

Format

Adobe PDF

Checksum (MD5)

575a8356c84eb4264159400f42e3d82f

Loading...
Thumbnail Image
Name

JCSDalton44-4016-supp.pdf

Access type

restricted

Size

628.71 KB

Format

Adobe PDF

Checksum (MD5)

8b75566151ab3eabe427e0598827d3ac

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés