Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Thermal Balancing of Liquid-Cooled 3D-MPSoCs Using Channel Modulation
 
conference paper

Thermal Balancing of Liquid-Cooled 3D-MPSoCs Using Channel Modulation

Sabry, Mohamed M.
•
Sridhar, Arvind  
•
Atienza Alonso, David  
2012
Proceedings of the IEEE/ACM 2012 Design Automation and Test in Europe conference (DATE)
IEEE/ACM 2012 Design Automation and Test in Europe conference (DATE)

While possessing the potential to replace conventional air-cooled heat sinks, inter-tier microchannel liquid cooling of 3D ICs also creates the problem of increased thermal gradients from the fluid inlet to outlet ports [1, 2]. These cooling-induced thermal gradients can be high enough to create undesirable stress in the ICs, undermining the structural reliability and lifetimes. In this paper, we present a novel design-time solution for the thermal gradient problem in liquid-cooled 3D Multi-Processor System-on-Chip (MPSoC) architectures. The proposed method is based on channel width modulation and provides the designers with an additional dimension in the design-space exploration. We formulate the channel width modulation as an optimal control design problem to minimize the temperature gradients in the 3D IC while meeting the design constraints. The proposed thermal balancing technique uses an analytical model for forced convective heat transfer in microchannels, and has been applied to a two tier 3D-MPSoC. The results show that the proposed approach can reduce thermal gradients by up to 31% when applied to realistic 3D-MPSoC architectures, while maintaining pressure drops in the microchannels well below their safe limits of operation.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

DATE2012-06.3_2-pp599_604.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

631.24 KB

Format

Adobe PDF

Checksum (MD5)

3c5a91506024d22f740aa708c2a4017a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés