Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A new objective metric to predict image quality using deep neural networks
 
conference paper not in proceedings

A new objective metric to predict image quality using deep neural networks

Akyazi, Pinar  
•
Ebrahimi, Touradj  
August 19, 2018
SPIE Optics + Photonics 2018

Quality assessment of images is of key importance for media applications. In this paper we present a new objective metric to predict the quality of images using deep neural networks. The network makes use of both the color information as well as frequency information extracted from reference and distorted images. Our method comprises of extracting a number of equal sized random patches from the reference image and the corresponding patches from the distorted image, then feeding the patches themselves as well as their 3-scale wavelet transform coefficients as input to our neural network. The architecture of our network consists of four branches, with the first three branches generating frequency features and the fourth branch extracting color features. Feature extraction is carried out using 12 to 15 convolutional layers and one pooling layer, while two fully connected layers are used for regression. The overall image quality is computed as a weighted sum of patch scores, where local weights are also learned by the network using two additional fully connected layers. We train our network using the TID2013 image database and test our model on TID2013, CSIQ and LIVE image databases. Our results have high correlation with subjective test scores, are generalizable for certain types of distortions and are competitive with respect to the state-of-the-art methods.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

A new objective metric to predict image quality using deep neural networks.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

2.6 MB

Format

Adobe PDF

Checksum (MD5)

c3542b4f766328b0a606ae7ecc5cd337

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés