Tunnel junction sensing of TATP explosive at the single-molecule level
Triacetone triperoxide (TATP) is a highly potent homemade explosive commonly used in terrorist attacks. Its detection poses a significant challenge due to its volatility, and the lack of portability of current sensing techniques. To address this issue, we propose a novel approach based on single-molecule TATP detection in the air using a device where tunneling current in N-terminated carbon-nanotubes nanogaps is measured. By employing the density functional theory combined with the non-equilibrium Green's function method, we show that current of tens of nanoamperes passes through TATP trapped in the nanogap, with a discrimination ratio of several orders of magnitude even against prevalent indoor volatile organic compounds (VOCs). This high tunneling current through TATP's highest occupied molecular orbital (HOMO) is facilitated by the strong electric field generated by N-C polar bonds at the electrode ends and by the hybridization between TATP and the electrodes, driven by oxygen atoms within the probed molecule. The application of the same principle is discussed for graphene nanogaps and break-junctions.|This DFT+NEGF study explores the sensing of the TATP explosive at a single molecule level. The real-time sensing via tunneling current measurement of a TATP molecule between N-terminated (3,3) CNT electrodes could be a solution for portable devices.
WOS:001072905700001
2023-09-22
25
39
26648
26658
REVIEWED
Funder | Grant Number |
This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (contract no. 451-03-47/2023-01/200053). We gratefully acknowledge financial support from the Swiss National Science Foundation (SCOPES p | |