Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Advanced hydro-mechanical coupling for unified constitutive modelling of unsaturated soils
 
conference paper

Advanced hydro-mechanical coupling for unified constitutive modelling of unsaturated soils

Nuth, Mathieu  
•
Laloui, Lyesse  
Toll, David G.
•
Augarde, Charles E.
Show more
2008
Unsaturated Soils: Advances in Geo-Engineering
1st European Conference on Unsaturated Soils, E-Unsat

A new unified constitutive hydro-mechanical model named ACMEG-s is formulated to improve modelling of unsaturated soils in free or constrained conditions. Indeed, due to particular mechanical and hydraulic boundary conditions, some natural and engineered fine grained soils are highly constrained. When submitted to in-situ wetting-drying cycles, such soils are prone either to collapsing or to generating swelling pressures. The proposed unified framework provides a direct explanation for complex confined behaviour of unsaturated soils. A sophisticated saturated model based on two coupled plastic mechanisms has been extended to deal with partially saturated states. The adopted stress framework includes a Bishop-type effective stress for the mechanical part and the matric suction for the hydraulic part. Some simplifications brought by the socalled generalised effective stress representation versus conventional net stress and suction representation are overviewed and related to the definition of the ‘Loading Collapse’ yield curve. Other implications of the unique mechanical stress associated with suction couplings are shown to be essential in prediction. The most pioneering results from the model validation by integration via a custom numerical tool are exposed. The combination of the advanced yet simple stress framework and the adapted yield locus is used for the prediction of oedometric and constant volume tests, leading to a straightforward interpretation of swelling pressure tests.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Nuth_Laloui2008.pdf

Access type

restricted

Size

206.92 KB

Format

Adobe PDF

Checksum (MD5)

dbb3a4fca467a9a8270d724482f97d24

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés