Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Edge states for the turbulence transition in the asymptotic suction boundary layer
 
research article

Edge states for the turbulence transition in the asymptotic suction boundary layer

Kreilos, Tobias  
•
Veble, Gregor
•
Schneider, Tobias M.  
Show more
2013
Journal of Fluid Mechanics

We demonstrate the existence of an exact invariant solution to the Navier-Stokes equations for the asymptotic suction boundary layer. The identified periodic orbit with a very long period of several thousand advective time units is found as a local dynamical attractor embedded in the stability boundary between laminar and turbulent dynamics. Its dynamics captures both the interplay of downstream-oriented vortex pairs and streaks observed in numerous shear flows as well as the energetic bursting that is characteristic for boundary layers. By embedding the flow into a family of flows that interpolates between plane Couette flow and the boundary layer, we demonstrate that the periodic orbit emerges in a saddle-node infinite-period (SNIPER) bifurcation of two symmetry-related travelling-wave solutions of plane Couette flow. Physically, the long period is due to a slow streak instability, which leads to a violent breakup of a streak associated with the bursting and the reformation of the streak at a different spanwise location. We show that the orbit is structurally stable when varying both the Reynolds number and the domain size.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1209.0593v2.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

Size

2.85 MB

Format

Adobe PDF

Checksum (MD5)

ca71db264865f8543cbd1ffd05f03366

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés