Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Tracking the Necessary Conditions of Optimality with Changing Set of Active Constraints using a Barrier-Penalty Function
 
research article

Tracking the Necessary Conditions of Optimality with Changing Set of Active Constraints using a Barrier-Penalty Function

Srinivasan, B.  
•
Biegler, L. T.
•
Bonvin, D.  
2008
Computers & Chemical Engineering

In the framework of process optimization, the use of measurements to compensate the effect of uncertainty has become an active area of research. One of the ideas therein is to enforce optimality by tracking the necessary conditions of optimality (NCO tracking). Most techniques assume that the set of active constraints remains the same even in the presence of uncertainty and disturbances. Consequently, changes in the active set are difficult to handle. In this paper, this assumption on active set tracking is relaxed by using a logarithmic-linear barrier-penalty function. This way, none of the constraints is active and no assumption regarding the active set is required. Optimization with this barrier-penalty function is shown to have the same convergence properties as optimization with the standard barrier function while, at the same time, avoiding a separate logic to guarantee feasibility. Thus, the adaptation can be more aggressive and lead to better performance. The gradient of the augmented objective function is computed using finite perturbations and forced to zero with PI-type controllers. The approach is illustrated in simulation via the static optimization of an isothermal continuous stirred-tank reactor.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

fulltext.pdf

Access type

restricted

Size

142.27 KB

Format

Adobe PDF

Checksum (MD5)

ded5af5f77c3cd4dfe99300ebe02ea59

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés