Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Beyond Conventional Security in Sponge-Based Authenticated Encryption Modes
 
research article

Beyond Conventional Security in Sponge-Based Authenticated Encryption Modes

Jovanovic, Philipp  
•
Luykx, Atul
•
Mennink, Bart
Show more
July 1, 2019
Journal Of Cryptology

The Sponge function is known to achieve 2c/2 security, where c is its capacity. This bound was carried over to its keyed variants, such as SpongeWrap, to achieve a min{2c/2,2 kappa} security bound, with kappa the key length. Similarly, many CAESAR competition submissions were designed to comply with the classical 2c/2 security bound. We show that Sponge-based constructions for authenticated encryption can achieve the significantly higher bound of min{2b/2,2c,2 kappa}, with b>c the permutation size, by proving that the CAESAR submission NORX achieves this bound. The proof relies on rigorous computation of multi-collision probabilities, which may be of independent interest. We additionally derive a generic attack based on multi-collisions that matches the bound. We show how to apply the proof to five other Sponge-based CAESAR submissions: Ascon, CBEAM/STRIBOB, ICEPOLE, Keyak, and two out of the three PRIMATEs. A direct application of the result shows that the parameter choices of some of these submissions are overly conservative. Simple tweaks render the schemes considerably more efficient without sacrificing security. We finally consider the remaining one of the three PRIMATEs, APE, and derive a blockwise adaptive attack in the nonce-respecting setting with complexity 2c/2, therewith demonstrating that the techniques cannot be applied to APE.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s00145-018-9299-7.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1014.62 KB

Format

Adobe PDF

Checksum (MD5)

527e47c59d165ce979fe41cddb477122

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés