Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Model-Based 2.5-D Deconvolution for Extended Depth of Field in Brightfield Microscopy
 
research article

Model-Based 2.5-D Deconvolution for Extended Depth of Field in Brightfield Microscopy

Aguet, F.  
•
Van De Ville, D.  
•
Unser, M.  
2008
IEEE Transactions on Image Processing

Due to the limited depth of field of brightfield microscopes, it is usually impossible to image thick specimens entirely in focus. By optically sectioning the specimen, the in-focus information at the specimen's surface can be acquired over a range of images. Commonly based on a high-pass criterion, extended-depth- of-field methods aim at combining the in-focus information from these images into a single image of the texture on the specimen's surface. The topography provided by such methods is usually limited to a map of selected in-focus pixel positions and is inherently discretized along the axial direction, which limits its use for quantitative evaluation. In this paper,we propose a method that jointly estimates the texture and topography of a specimen from a series of brightfield optical sections; it is based on an image formation model that is described by the convolution of a thick specimen model with the microscope's point spread function. The problem is stated as a least-squares minimization where the texture and topography are updated alternately. This method also acts as a deconvolution when the in-focus PSF has a blurring effect, or when the true in-focus position falls in between two optical sections. Comparisons to state-of-the-art algorithms and experimental results demonstrate the potential of the proposed approach.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

aguet0802.pdf

Access type

openaccess

Size

2.69 MB

Format

Adobe PDF

Checksum (MD5)

2e7746ba16de68fc3f00abfbb80a8ffd

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés