Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Phase-field simulation of micropores constrained by a solid network
 
research article

Phase-field simulation of micropores constrained by a solid network

Jacot, A.  
•
Meidani, H.
•
Felberbaum, M.
2009
Transactions of the Indian Institute of Metals

A 2D phase-field model has been developed in order to describe the morphology of a pore forming within interdendritic liquid channels and the geometrical effect of mechanical contacts with neighboring solid. The distribution of the solid, liquid and gas phases is calculated with a multiphase-field approach which accounts for the pressure difference between the liquid and gas phases, as well as diffusion of dissolved gases in the liquid. The model incorporates the perfect gas and Sievert's laws to describe the concentration and partitioning of gas molecules or atoms at the pore/liquid interface. The results show that the presence of solid can substantially influence the volume and pressure of the pore. A pore constrained to grow in narrow liquid channels exhibits a substantially higher mean curvature, a larger pressure and a smaller volume as compared with a pore grown under unconstrained conditions.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

12666_2009_Article_47.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

415.97 KB

Format

Adobe PDF

Checksum (MD5)

8dd1fd8f48ba3fdc328b3625fdba755d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés