Publication:

Gravity-driven slug motion in capillary tubes

cris.lastimport.scopus

2024-08-08T12:13:15Z

cris.legacyId

143955

cris.virtual.parent-organization

IIE

cris.virtual.parent-organization

ENAC

cris.virtual.parent-organization

EPFL

cris.virtual.sciperId

169273

cris.virtual.unitId

11248

cris.virtual.unitManager

Parlange, M. B.

cris.virtualsource.author-scopus

c716a573-4e65-498b-ba29-6d9f1543ecb7

cris.virtualsource.department

c716a573-4e65-498b-ba29-6d9f1543ecb7

cris.virtualsource.orcid

c716a573-4e65-498b-ba29-6d9f1543ecb7

cris.virtualsource.parent-organization

ff5c23ae-20c2-49cf-9a90-15f571721f32

cris.virtualsource.parent-organization

ff5c23ae-20c2-49cf-9a90-15f571721f32

cris.virtualsource.parent-organization

ff5c23ae-20c2-49cf-9a90-15f571721f32

cris.virtualsource.parent-organization

ff5c23ae-20c2-49cf-9a90-15f571721f32

cris.virtualsource.rid

c716a573-4e65-498b-ba29-6d9f1543ecb7

cris.virtualsource.sciperId

c716a573-4e65-498b-ba29-6d9f1543ecb7

cris.virtualsource.unitId

ff5c23ae-20c2-49cf-9a90-15f571721f32

cris.virtualsource.unitManager

ff5c23ae-20c2-49cf-9a90-15f571721f32

datacite.rights

openaccess

dc.contributor.author

Lunati, I.

dc.contributor.author

Or, D.

dc.date.accessioned

2010-01-28T09:10:28

dc.date.available

2010-01-28T09:10:28

dc.date.created

2010-01-28

dc.date.issued

2009

dc.date.modified

2025-04-30T11:43:55.472722Z

dc.description.abstract

The velocity of a liquid slug falling in a capillary tube is lower than predicted for Poiseuille flow due to presence of menisci, whose shapes are determined by the complex interplay of capillary, viscous, and gravitational forces. Due to the presence of menisci, a capillary pressure proportional to surface curvature acts on the slug and streamlines are bent close to the interface, resulting in enhanced viscous dissipation at the wedges. To determine the origin of drag-force increase relative to Poiseuille flow, we compute the force resultant acting on the slug by integrating Navier–Stokes equations over the liquid volume. Invoking relationships from differential geometry we demonstrate that the additional drag is due to viscous forces only and that no capillary drag of hydrodynamic origin exists !i.e., due to hydrodynamic deformation of the interface". Requiring that the force resultant is zero, we derive scaling laws for the steady velocity in the limit of small capillary numbers by estimating the leading order viscous dissipation in the different regions of the slug !i.e., the unperturbed Poiseuille-like bulk, the static menisci close to the tube axis and the dynamic regions close to the contact lines". Considering both partial and complete wetting, we find that the relationship between dimensionless velocity and weight is, in general, nonlinear. Whereas the relationship obtained for complete-wetting conditions is found in agreement with the experimental data of Bico and Quéré #J. Bico and D. Quéré, J. Colloid Interface Sci. 243, 262 !2001"$, the scaling law under partial-wetting conditions is validated by numerical simulations performed with the Volume of Fluid method. The simulated steady velocities agree with the behavior predicted by the theoretical scaling laws in presence and in absence of static contact angle hysteresis. The numerical simulations suggest that wedge-flow dissipation alone cannot account for the entire additional drag and that the non-Poiseuille dissipation in the static menisci !not considered in previous studies" has to be considered for large contact angles.

dc.description.sponsorship

LASEP

dc.identifier.doi

10.1063/1.3125262

dc.identifier.isi

WOS:000266500500007

dc.identifier.uri

https://infoscience.epfl.ch/handle/20.500.14299/46246

dc.relation

https://infoscience.epfl.ch/record/143955/files/LunatiOr2009.pdf

dc.relation.journal

Physics Of Fluids

dc.subject

capillarity

dc.subject

contact angle

dc.subject

drag

dc.subject

flow simulation

dc.subject

gravity waves

dc.subject

multiphase flow

dc.subject

Navier-Stokes equations

dc.subject

numerical analysis

dc.subject

pipe flow

dc.subject

Poiseuille flow

dc.subject

wetting

dc.subject

Solid-Surface

dc.subject

Liquid

dc.subject

Dynamics

dc.subject

Fractures

dc.subject

Interface

dc.subject

Systems

dc.subject

Flow

dc.title

Gravity-driven slug motion in capillary tubes

dc.type

text::journal::journal article::research article

dspace.entity.type

Publication

dspace.legacy.oai-identifier

oai:infoscience.tind.io:143955

epfl.legacy.fileversion

n/a

epfl.legacy.itemtype

Journal Articles

epfl.legacy.submissionform

ARTICLE

epfl.oai.currentset

ENAC

epfl.oai.currentset

article

epfl.oai.currentset

OpenAIREv4

epfl.peerreviewed

REVIEWED

epfl.publication.version

http://purl.org/coar/version/c_970fb48d4fbd8a85

epfl.writtenAt

EPFL

oaire.citation.endPage

1

oaire.citation.issue

5

oaire.citation.startPage

052003

oaire.citation.volume

0520-03

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LunatiOr2009.pdf
Size:
286.48 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections