Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. On infinite dimensional linear programming approach to stochastic control * *This research is partially supported by M. Kamgarpour’s European Union ERC Starting Grant, CONENE and by T. Summers’ the US National Science Foundation under grant CNS-1566127.
 
research article

On infinite dimensional linear programming approach to stochastic control * *This research is partially supported by M. Kamgarpour’s European Union ERC Starting Grant, CONENE and by T. Summers’ the US National Science Foundation under grant CNS-1566127.

Kamgarpour, Maryam  
•
Summers, Tyler
July 2017
IFAC-PapersOnLine

We consider the infinite dimensional linear programming (inf-LP) approach for solving stochastic control problems. The inf-LP corresponding to problems with uncountable state and input spaces is in general computationally intractable. By focusing on linear systems with quadratic cost (LQG), we establish a connection between this approach and the well-known Riccati LMIs. In particular, we show that the semidefinite programs known for the LQG problem can be derived from the pair of primal and dual inf-LPs. Furthermore, we establish a connection between multi-objective and chance constraint criteria and the inf-LP formulation.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.ifacol.2017.08.979
Author(s)
Kamgarpour, Maryam  
Summers, Tyler
Date Issued

2017-07

Published in
IFAC-PapersOnLine
Volume

50

Issue

1

Start page

6148

End page

6153

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
SYCAMORE  
Available on Infoscience
December 1, 2021
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/183355
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés