Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. The covering radius and a discrete surface area for non-hollow simplices
 
research article

The covering radius and a discrete surface area for non-hollow simplices

Codenotti, Giulia
•
Santos, Francisco
•
Schymura, Matthias  
2022
Discrete & Computational Geometry

We explore upper bounds on the covering radius of non-hollow lattice polytopes. In particular, we conjecture a general upper bound of d/2 in dimension d, achieved by the "standard terminal simplices" and direct sums of them. We prove this conjecture up to dimension three and show it to be equivalent to the conjecture of González-Merino & Schymura (2017) that the d-th covering minimum of the standard terminal n-simplex equals d/2, for every n>d. We also show that these two conjectures would follow from a discrete analog for lattice simplices of Hadwiger's formula bounding the covering radius of a convex body in terms of the ratio of surface area versus volume. To this end, we introduce a new notion of discrete surface area of non-hollow simplices. We prove our discrete analog in dimension two and we give strong evidence for its validity in arbitrary dimension.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s00454-021-00330-3.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

761.05 KB

Format

Adobe PDF

Checksum (MD5)

56b659ecf7ef274273b10e4cf203384e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés