Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Neural correlates of non-retinotopic motion integration
 
Loading...
Thumbnail Image
conference paper

Neural correlates of non-retinotopic motion integration

Thunell, Evelina
•
Plomp, Gijs  
•
Öğmen, Haluk
Show more
2012
Journal of Vision
Vision Sciences Society Annual Meeting

Under normal viewing conditions, due to the motion of objects and to eye movements, the retinotopic representation of the environment constantly changes. Yet we perceive the world as stable, and we easily keep track of moving objects. Here, we investigated the neural correlates of non-retinotopic motion integration using high-density EEG. We used a Ternus-Pikler display to establish either a retinotopic or non-retinotopic frame of reference. Three disks were presented for 250 ms followed by an ISI of 150 ms. The disks then reappeared either at the same location (retinotopic reference frame), or shifted sideways (non-retinotopic reference frame). After another ISI, the sequence started over again. In the middle disk, a dot was either changing positions across frames in a rotating fashion, or stayed in the same position. Every 5th to 9th frame, the dot started or stopped rotating, and observers reported this with a button-press. We found higher EEG responses for rotating than static dots. This effect occurred rather late (>200 ms), i.e. after basic stimulus encoding (P1 component). Importantly, these results hold for both the retinotopic and the non-retinotopic conditions, indicating that the encoding of rotation does not depend on reference frame. In line with this, reference frame effects were observed at earlier latencies and did not interact with rotation effects. Electrical source imaging showed that the underlying neural processing of this non-retinotopic effect seems to be located partially in extrastriate visual areas.

  • Details
  • Metrics
Type
conference paper
DOI
10.1167/12.9.148
Author(s)
Thunell, Evelina
•
Plomp, Gijs  
•
Öğmen, Haluk
•
Herzog, Michael H.  
Date Issued

2012

Publisher

Association for Research in Vision and Ophthalmology

Journal
Journal of Vision
Volume

12

Issue

9

Start page

148

Subjects

EEG

•

apparent motion

•

non-retinotopic processing

•

object-based processing

•

Ternus-Pikler display

Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LPSY  
Event nameEvent placeEvent date
Vision Sciences Society Annual Meeting

Naples, Florida, USA

May 11-16, 2012

Available on Infoscience
October 5, 2012
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/85986
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés