Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Investigation of Tunnel Field-Effect Transistors as a Capacitor-less Memory Cell
 
Loading...
Thumbnail Image
research article

Investigation of Tunnel Field-Effect Transistors as a Capacitor-less Memory Cell

Biswas, Arnab  
•
Dagtekin, Nilay  
•
Grabinski, Wladyslaw  
Show more
2014
Applied Physics Letters

In this work we report experimental results on the use of Tunnel Field-Effect Transistors (TFET) as capacitorless Dynamic Random Access Memory (DRAM) cells, implemented as a double-gate (DG) Fully-Depleted Silicon-On-Insulator (FD-SOI) devices. The devices have an asymmetric design, with a partial overlap of the top gate (LG) with a total overlap of the back gate over the channel region (LG+LIN). A potential well is created by biasing the back gate (VBG) in accumulation while the front gate (VFG) is in inversion. Holes from the p+ source are injected by the forward-biased p+i junction and stored in the electrically induced potential well.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés