Path properties of the solution to the stochastic heat equation with Levy noise
We consider sample path properties of the solution to the stochastic heat equation, in Rd or bounded domains of Rd, driven by a Levy space-time white noise. When viewed as a stochastic process in time with values in an infinite-dimensional space, the solution is shown to have a cadlag modification in fractional Sobolev spaces of index less than - Concerning the partial regularity of the solution in time or space when the other variable is fixed, we determine critical values for the Blumenthal-Getoor index of the Levy noise such that noises with a smaller index entail continuous sample paths, while Levy noises with a larger index entail sample paths that are unbounded on any non-empty open subset. Our results apply to additive as well as multiplicative Levy noises, and to light- as well as heavy-tailed jumps.
WOS:000459903800005
2019-03-01
7
1
123
168
REVIEWED