Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Deep convolutional neural networks for estimating porous material parameters with ultrasound tomography
 
research article

Deep convolutional neural networks for estimating porous material parameters with ultrasound tomography

Lahivaara, Timo
•
Karkkainen, Leo
•
Huttunen, Janne MJ
Show more
2018
Journal of the Acoustical Society of America

We study the feasibility of data based machine learning applied to ultrasound tomography to estimate water-saturated porous material parameters. In this work, the data to train the neural networks is simulated by solving wave propagation in coupled poroviscoelastic-viscoelastic-acoustic media. As the forward model, we consider a high-order discontinuous Galerkin method while deep convolutional neural networks are used to solve the parameter estimation problem. In the numerical experiment, we estimate the material porosity and tortuosity while the remaining parameters which are of less interest are successfully marginalized in the neural networks-based inversion. Computational examples confirms the feasibility and accuracy of this approach.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

LahivaaraKarkkainenHuttunenHesthaven_arXiv_2017.pdf

Type

Preprint

cris-layout.advanced-attachment.oaire.version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

Size

2.36 MB

Format

Adobe PDF

Checksum (MD5)

13d889b848029bc307088045633dfdf0

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés