MATHICSE Technical Report : Spectral based discontinuous Galerkin reduced basis element method for parametrized Stokes problems
In this work we extend to the Stokes problem the Discontinuous Galerkin Reduced Basis Element (DGRBE) method introduced in [1]. By this method we aim at reducing the computational cost for the approximation of a parametrized Stokes problem on a domain partitioned into subdomains. During an offline stage, expensive but performed only once, a low-dimensional approximation space is built on each subdomain. For any new value of the parameter, the rapid evaluation of the solution takes place during the online stage and consists in a Galerkin projection onto the low-dimensional subspaces computed offline. The high-fidelity discretization on each subdomain, used to build the local low-dimensional subspaces, is based on spectral element methods. The continuity of both the velocity and the normal component of the Cauchy stress tensor at subdomain interfaces is weakly enforced by a discontinuous Galerkin approach.
10.2016-PP-PG-AQ.pdf
openaccess
738.31 KB
Adobe PDF
b213df10b81ec723b0ec253c93c3afeb