Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Neurochemical profile of the mouse hypothalamus using in vivo1H MRS at 14.1T
 
research article

Neurochemical profile of the mouse hypothalamus using in vivo1H MRS at 14.1T

Lei, Hongxia  
•
Poitry-Yamate, Carole  
•
Preitner, Frédéric
Show more
2010
Nmr in Biomedicine

The hypothalamus plays an essential role in the central nervous system of mammals by among others regulating glucose homeostasis, food intake, temperature, and to some extent blood pressure. Assessments of hypothalamic metabolism using, e.g. 1H MRS in mouse models can provide important insights into its function. To date, direct invivo1H MRS measurements of hypothalamus have not been reported. Here, we report that invivo single voxel measurements of mouse hypothalamus are feasible using 1H MRS at 14.1T. Localized 1H MR spectra from hypothalamus were obtained unilaterally (2–2.2 µL, VOI) and bilaterally (4–4.4 µL) with a quality comparable to that of hippocampus (3–3.5 µL). Using LCModel, a neurochemical profile consisting of 21 metabolites was quantified for both hypothalamus and hippocampus with most of the Cramér-Rao lower bounds within 20%. Relative to the hippocampus, the hypothalamus was characterized by high γ-aminobutryric acid and myo-inositol, and low taurine concentrations. When studying transgenic mice with no glucose transporter isoform 8 expressed, small metabolic changes were observed, yet glucose homeostasis was well maintained. We conclude that a specific neurochemical profile of mouse hypothalamus can be measured by 1H MRS which will allow identifying and following metabolic alterations longitudinally in the hypothalamus of genetic modified models.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Lei_hypothalamus.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

206.75 KB

Format

Adobe PDF

Checksum (MD5)

d0dc08b8ab6c8a3cd3cec264e3385958

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés