Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Fluorescent pseudo-peptide linear vasopressin antagonists: Design, synthesis, and applications
 
Loading...
Thumbnail Image
research article

Fluorescent pseudo-peptide linear vasopressin antagonists: Design, synthesis, and applications

Durroux, T.
•
Peter, M.
•
Turcatti, G.  
Show more
1999
Journal of Medicinal Chemistry

Fluoresceinyl and rhodamyl groups have been coupled by an amide link to side-chain amino groups at positions 1, 6, and 8 of pseudo-peptide linear vasopressin antagonists (Manning et al. Int. J. Pept. Protein Res. 1992, 40, 261-267) through different positions on the fluorophore, to give tetraethylrhodamyl-DTyr(Me)-Phe-Gln-Asn-Arg-Pro-Arg-Tyr-NH2 (2), 4- HOPh(CH2)2-CO-DTyr(Me)-Phe-Gln-Asn-Lys(5-carboxyfluoresceinyl)-Pro-Arg- NH2 (4), 4-HOPh(CH2)2CO-DTyr(Me)-Phe-Gln-Asn-Lys(5- or 6- carboxytetramethylrhodamyl)-Pro-Arg-NH2 (5, 6), 4-HOPh-(CH2)2CO-DTyr(Me)- Phe-Gln-Asn-Arg-Pro-Lys(5- or 6- carboxyfluoresceinyl)-NH2 (8, 9), and 4- HOPh(CH2)2CO-DTyr(Me)-Phe-Gln-Asn-Arg-Pro-Lys(5- or 6- carboxytetramethylrhodamyl)-NH2 (10, 11). The closer to the C-terminus the fluorophore, the higher the affinities of the fluorescent derivatives for the human vasopressin V(1a) receptor transfected in CHO cells. The compound 10 has a K(i) of 70 pM, as determined by competition experiments with [125I]- 4-HOPh-CH2CO-DTyr(Me)-Phe-Gln-Asn-Arg-Pro-Arg-NH2. It showed a good selectivity for human V(1a) receptor versus human OT (K(i) = 1.2 nM), human vasopressin V(1b) (K(i) approximately 27 nM), and human vasopressin V2 (K(i) > 5000 nM) receptor subtypes. All fluorescent analogues were antagonists as shown by the inhibition of vasopressin induced inositol phosphate accumulation. These fluorescent ligands are efficient for labeling cells expressing the human V(1a) receptor subtype, as shown by flow cytofluorometric experiments or fluorescence microscopy. They are also appropriate tools for structural analysis of the vasopressin receptors by fluorescence.

  • Details
  • Metrics
Type
research article
DOI
10.1021/jm9804782
Author(s)
Durroux, T.
•
Peter, M.
•
Turcatti, G.  
•
Chollet, A.
•
Balestre, M. N.
•
Barberis, C.
•
Seyer, R.
Date Issued

1999

Published in
Journal of Medicinal Chemistry
Volume

42

Issue

7

Start page

1312

End page

1319

Subjects

amide

•

pseudopeptide

•

vasopressin

•

vasopressin antagonist

•

drug design

•

drug synthesis

Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
PTCB  
Available on Infoscience
August 14, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/232867
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés