Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. On the Difficulty of Selecting Ising Models with Approximate Recovery
 
research article

On the Difficulty of Selecting Ising Models with Approximate Recovery

Scarlett, Jonathan  
•
Cevher, Volkan  orcid-logo
2016
IEEE Transactions on Signal and Information Processing over Networks

In this paper, we consider the problem of estimating the underlying graph associated with an Ising model given a number of independent and identically distributed samples. We adopt an approximate recovery criterion that allows for a number of missed edges or incorrectly included edges, in contrast with the widely studied exact recovery problem. Our main results provide information-theoretic lower bounds on the sample complexity for graph classes imposing constraints on the number of edges, maximal degree, and other properties. We identify a broad range of scenarios where, either up to constant factors or logarithmic factors, our lower bounds match the best known lower bounds for the exact recovery criterion, several of which are known to be tight or near-tight. Hence, in these cases, approximate recovery has a similar difficulty to exact recovery in the minimax sense. Our bounds are obtained via a modification of Fano's inequality for handling the approximate recovery criterion, along with suitably designed ensembles of graphs that can broadly be classed into two categories: 1) those containing graphs that contain several isolated edges or cliques and are thus difficult to distinguish from the empty graph; 2) those containing graphs for which certain groups of nodes are highly correlated, thus making it difficult to determine precisely which edges connect them. We support our theoretical results on these ensembles with numerical experiments.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PartialMRF.pdf

Access type

openaccess

Size

447.74 KB

Format

Adobe PDF

Checksum (MD5)

d65242af597fbda8e4be54316814205f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés