Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Strong coupling between a microwave photon and a singlet-triplet qubit
 
Loading...
Thumbnail Image
research article

Strong coupling between a microwave photon and a singlet-triplet qubit

Ungerer, J. H.
•
Pally, A.
•
Kononov, A.
Show more
February 5, 2024
Nature Communications

Combining superconducting resonators and quantum dots has triggered tremendous progress in quantum information, however, attempts at coupling a resonator to even charge parity spin qubits have resulted only in weak spin-photon coupling. Here, we integrate a zincblende InAs nanowire double quantum dot with strong spin-orbit interaction in a magnetic-field resilient, high-quality resonator. The quantum confinement in the nanowire is achieved using deterministically grown wurtzite tunnel barriers. Our experiments on even charge parity states and at large magnetic fields, allow us to identify the relevant spin states and to measure the spin decoherence rates and spin-photon coupling strengths. We find an anti-crossing between the resonator mode in the single photon limit and a singlet-triplet qubit with a spin-photon coupling strength of g/2 pi = 139 +/- 4 MHz. This coherent coupling exceeds the resonator decay rate kappa/2 pi = 19.8 +/- 0.2 MHz and the qubit dephasing rate gamma/2 pi = 116 +/- 7 MHz, putting our system in the strong coupling regime.|By coupling a spin-qubit to a superconducting resonator, remote spin-entanglement becomes feasible. Here, Ungerer et al achieve strong coupling between a superconducting resonator and a singlet-triplet spin qubit, in an InAs nanowire.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

document.pdf

Type

Publisher's Version

Access type

openaccess

License Condition

CC BY

Size

1.13 MB

Format

Adobe PDF

Checksum (MD5)

ae1207a85fe6d61f241576ad4cfd27e5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés