Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Residual-based a posteriori error estimation for contact problems approximated by Nitsche's method
 
research article

Residual-based a posteriori error estimation for contact problems approximated by Nitsche's method

Chouly, Franz
•
Fabre, Mathieu Jonathan  
•
Hild, Patrick
Show more
2018
IMA JOURNAL OF NUMERICAL ANALYSIS

We introduce a residual-based a posteriori error estimator for contact problems in two- and three-dimensional linear elasticity, discretized with linear and quadratic finite elements and Nitsche’s method. Efficiency and reliability of the estimator are proved under a saturation assumption. Numerical experiments illustrate the theoretical properties and the good performance of the estimator.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

IMAJNA_38_2_921.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

Copyright

Size

3.76 MB

Format

Adobe PDF

Checksum (MD5)

5d6583ace88f07a2c1b0a65fadbbe759

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés