Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. The bone diagnostic instrument II: Indentation distance increase
 
research article

The bone diagnostic instrument II: Indentation distance increase

Hansma, P.
•
Turner, P.
•
Drake, B.  
Show more
2008
Review of Scientific Instruments

The bone diagnostic instrument (BDI) is being developed with the long-term goal of providing a way for researchers and clinicians to measure bone material properties of human bone in vivo. Such measurements could contribute to the overall assessment of bone fragility in the future. Here, we describe an improved BDI, the Osteoprobe II (TM). In the Osteoprobe II (TM), the probe assembly, which is designed to penetrate soft tissue, consists of a reference probe (a 22 gauge hypodermic needle) and a test probe (a small diameter, sharpened rod) which slides through the inside of the reference probe. The probe assembly is inserted through the skin to rest on the bone. The distance that the test probe is indented into the bone can be measured relative to the position of the reference probe. At this stage of development, the indentation distance increase (IDI) with repeated cycling to a fixed force appears to best distinguish bone that is more easily fractured from bone that is less easily fractured. Specifically, in three model systems, in which previous mechanical testing and/or tests reported here found degraded mechanical properties such as toughness and postyield strain, the BDI found increased IDI. However, it must be emphasized that, at this time, neither the IDI nor any other mechanical measurement by any technique has been shown clinically to correlate with fracture risk. Further, we do not yet understand the mechanism responsible for determining IDI beyond noting that it is a measure of the continuing damage that results from repeated loading. As such, it is more a measure of plasticity than elasticity in the bone. (c) 2008 American Institute of Physics.

  • Details
  • Metrics
Type
research article
DOI
10.1063/1.2937199
Web of Science ID

WOS:000257283700033

Author(s)
Hansma, P.
Turner, P.
Drake, B.  
Yurtsev, E.
Proctor, A.
Mathews, P.
Lelujian, J.
Randall, C.
Adams, J.  
Jungmann, R.
Show more
Date Issued

2008

Published in
Review of Scientific Instruments
Volume

79

Issue

6

Article Number

064303

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LBNI  
Available on Infoscience
November 5, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/56726
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés