Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Hierarchical Routing over Dynamic Wireless Networks
 
Loading...
Thumbnail Image
report

Hierarchical Routing over Dynamic Wireless Networks

Tschopp, Dominique
•
Diggavi, Suhas N.  
•
Grossglauser, Matthias  
2007

Dynamic networks are those where the topology changes over time and therefore efficient routes need to be maintained by frequent updates. Such updates could be costly in terms of consuming throughput available for data transmission, which is a precious resource in wireless networks. In this paper, we ask the question whether there exist low-overhead schemes for dynamic wireless networks, that could produce routes that are within a small constant factor (stretch) of the optimal route-length. This is studied by using the underlying geometric properties of the connectivity graph in wireless networks. For a class of models for mobile wireless network that fulfill some mild conditions on the connectivity and on mobility over the time of interest, we can design distributed routing algorithm that maintains the routes over a changing topology. This scheme needs only node identities and therefore integrates location service along with routing, therefore accounting for the complete overhead. We analyze the worst-case (conservative) overhead and route-quality (stretch) performance of this algorithm for the aforementioned class of wireless network connectivity and mobility models. In particular for these models, we show that our algorithm allows constant stretch routing with a network wide control traffic overhead of $O(n\log^2 n)$ bits per mobility time step (time-scale of topology change) translating to $O(\log^2 n)$ overhead per node (with high probability for wireless networks with such mobility model). Additionally, we can reduce the maximum overhead per node by using a load-balancing technique at the cost of a slightly higher average overhead. We also demonstrate through numerics that these worst-case bounds are quite conservative in terms of the constants derived theoretically.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

TDG_WirelessRouting_2008.pdf

Access type

openaccess

Size

701.18 KB

Format

Adobe PDF

Checksum (MD5)

7e145beaed626457fa2b975ff0721add

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés