Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Phosphate adsorption by mineral weathering particles in oligotrophic waters of high particle content
 
research article

Phosphate adsorption by mineral weathering particles in oligotrophic waters of high particle content

Mueller, Beat
•
Stierli, Ruth
•
Wüest, Alfred  
2006
Water Resources Research

We investigated the interactions of dissolved reactive phosphorus (DRP) and dissolved nonreactive phosphorus (DNRP) with suspended and settled aquatic particles. The sorption to minerogenic particles from an alpine catchment collected in rivers, hydropower reservoirs, and a downstream ultraoligotrophic lake was modeled using Langmuir-type isotherms. DRP and DNRP exhibited about equal affinities to particle surfaces. The sorption of dissolved species to surfaces alters the fate of P in water bodies. In spite of the small surface-binding constants, high particle concentrations enhance the sorption of P to surfaces, and, consequently, chemical analysis of DRP can substantially underestimate the potentially bioavailable P. In unpolluted rivers with high content of suspended mineral particles, e. g., triggered by heavy rain events (2 mu g DRP/L, 1.3 g/L suspended particles), P loads solely based on DRP measurements underestimate the true load of potentially bioavailable P by more than a factor of two. Modeling P sorption equilibria with a single type of surface site generates a management tool for water quality in P-limited oligotrophic systems.

  • Details
  • Metrics
Type
research article
DOI
10.1029/2005Wr004778
Web of Science ID

WOS:000241303300002

Author(s)
Mueller, Beat
Stierli, Ruth
Wüest, Alfred  
Date Issued

2006

Publisher

Amer Geophysical Union

Published in
Water Resources Research
Volume

42

Issue

10

Article Number

W10414

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
APHYS  
Available on Infoscience
June 10, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/92661
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés