Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. On the continuity of mean total normal stress in geometrical multiscale cardiovascular problems
 
Loading...
Thumbnail Image
research article

On the continuity of mean total normal stress in geometrical multiscale cardiovascular problems

Blanco, Pablo Javier
•
Deparis, Simone  
•
Malossi, Adelmo Cristiano Innocenza  
2013
Journal of Computational Physics

In this work an iterative strategy to implicitly couple dimensionally-heterogeneous blood flow models accounting for the continuity of mean total normal stress at interface boundaries is developed. Conservation of mean total normal stress in the coupling of heterogeneous models is mandatory to satisfy energetic consistency between them. Nevertheless, existing methodologies are based on modifications of the Navier-Stokes variational formulation, which are undesired when dealing with fluid-structure interaction or black box codes. The proposed methodology makes possible to couple one-dimensional and three-dimensional fluid-structure interaction models, enforcing the continuity of mean total normal stress while just imposing flow rate data or even the classical Neumann boundary data to the models. This is accomplished by modifying an existing iterative algorithm, which is also able to account for the continuity of the vessel area, when required. Comparisons are performed to assess differences in the convergence properties of the algorithms when considering the continuity of mean normal stress and the continuity of mean total normal stress for a wide range of flow regimes. Finally, examples in the physiological regime are shown to evaluate the importance, or not, of considering the continuity of mean total normal stress in hemodynamics simulations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

BlancoDeparisMalossi_TotalStressContinuity.pdf

Access type

openaccess

Size

1.59 MB

Format

Adobe PDF

Checksum (MD5)

119108def6a06201556b6f7a1c9c5a25

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés