Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Mechanisms of Boiling in Micro-Channels: Critical Assessment
 
research article

Mechanisms of Boiling in Micro-Channels: Critical Assessment

Thome, John  
•
Consolini, Lorenzo  
2010
Heat Transfer Engineering

Numerous characteristic trends and effects have been observed in published studies on two-phase micro-channel boiling heat transfer. While macro-scale flow boiling heat transfer may be decomposed into nucleate and convective boiling contributions, at the micro-scale the extent of these two important mechanisms remains unclear. Although many experimental studies have proposed nucleate boiling as the dominant micro-scale mechanism, based on the strong dependence of the heat transfer coefficient on the heat flux similar to nucleate pool boiling, they fall short when it comes to actual physical proof. A strong presence of nucleate boiling is reasonably associated to a flow of bubbles with sizes ranging from the microscopic scale to the magnitude of the channel diameter. The bubbly flow pattern, which adapts well to this description, is observed, however, only over an extremely limited range of low vapor qualities (typically for quality less than 0.01-0.05). Furthermore, at intermediate and high vapor qualities, when the flow assumes the annular configuration and a convective behavior is expected to dominate the heat transfer process, the experimental evidence yields entirely counterintuitive results, with heat transfer coefficients often decreasing with increasing vapor quality rather than increasing as in macro-scale channels, and with a much diminished heat flux dependency compared with would be expected. In summary, convective boiling in micro-channels has been revealed to be much more complex than originally thought. The present review aims at describing and analyzing the boiling mechanisms that have been proposed for two-phase micro-channel flows and confronting them with the available experimental heat transfer results, while highlighting those questions that, to date, remain unanswered.

  • Details
  • Metrics
Type
research article
DOI
10.1080/01457630903312049
Web of Science ID

WOS:000275457500004

Author(s)
Thome, John  
Consolini, Lorenzo  
Date Issued

2010

Publisher

Taylor & Francis

Published in
Heat Transfer Engineering
Volume

31

Issue

4

Start page

288

End page

297

Subjects

Small-Diameter Tubes

•

Heat-Transfer Model

•

2-Phase Flow

•

Part I

•

Microchannels

•

Evaporation

•

Bubbles

•

R-134A

•

Flux

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LTCM  
Available on Infoscience
March 19, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/48329
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés