Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A graph convolutional autoencoder approach to model order reduction for parametrized PDEs
 
Loading...
Thumbnail Image
research article

A graph convolutional autoencoder approach to model order reduction for parametrized PDEs

Pichi, Federico  
•
Moya, Beatriz
•
Hesthaven, Jan S  
January 17, 2024
Journal Of Computational Physics

The present work proposes a framework for nonlinear model order reduction based on a Graph Convolutional Autoencoder (GCA-ROM). In the reduced order modeling (ROM) context, one is interested in obtaining real -time and many-query evaluations of parametric Partial Differential Equations (PDEs). Linear techniques such as Proper Orthogonal Decomposition (POD) and Greedy algorithms have been analyzed thoroughly, but they are more suitable when dealing with linear and affine models showing a fast decay of the Kolmogorov n-width. On one hand, the autoencoder architecture represents a nonlinear generalization of the POD compression procedure, allowing one to encode the main information in a latent set of variables while extracting their main features. On the other hand, Graph Neural Networks (GNNs) constitute a natural framework for studying PDE solutions defined on unstructured meshes. Here, we develop a non-intrusive and data -driven nonlinear reduction approach, exploiting GNNs to encode the reduced manifold and enable fast evaluations of parametrized PDEs. We show the capabilities of the methodology for several models: linear/nonlinear and scalar/vector problems with fast/slow decay in the physically and geometrically parametrized setting. The main properties of our approach consist of (i) high generalizability in the low-data regime even for complex behaviors, (ii) physical compliance with general unstructured grids, and (iii) exploitation of pooling and un-pooling operations to learn from scattered data.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.jcp.2024.112762
Web of Science ID

WOS:001163983100001

Author(s)
Pichi, Federico  
•
Moya, Beatriz
•
Hesthaven, Jan S  
Date Issued

2024-01-17

Publisher

Academic Press Inc Elsevier Science

Published in
Journal Of Computational Physics
Volume

501

Article Number

112762

Subjects

Technology

•

Physical Sciences

•

Nonlinear Reduced Order Modeling

•

Parametric Pdes

•

Graph Neural Networks

•

Convolutional Autoencoder

•

Geometrical Parameters

Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
MCSS  
FunderGrant Number

Ministry of Science and Innovation of the Government of Spain

IT1/21

AEI/10.13039/501100011033

PID2020-113463RB-C31

Available on Infoscience
March 18, 2024
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/206429
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés