Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Converse mode piezoelectric coefficient for lead zirconate titanate thin film with interdigitated electrode
 
research article

Converse mode piezoelectric coefficient for lead zirconate titanate thin film with interdigitated electrode

Chidambaram, N.
•
Balma, D.
•
Nigon, R.
Show more
2015
Journal Of Micromechanics And Microengineering

The use of interdigitated electrodes (IDEs) in conjunction with ferroelectric thin films shows many attractive features for piezoelectric MEMS applications. In this work, growth of {1 0 0}-textured lead zirconate titanate (PZT) thin films was achieved on insulating MgO buffered, oxidized silicon substrates. IDEs were fabricated by lift-off techniques and cantilevers were formed by dicing. The deflection upon application of a sweeping voltage was measured as large signal response in parallel to the ferroelectric polarization (PV loop). Likewise, the small signal piezoelectric response was measured in parallel to the capacitance-voltage (CV) measurement. In this way, a complete picture of the ferroelectric-piezoelectric element was obtained. From the deflection, the in-plane piezoelectric stress in the PZT thin film was derived and, from this, the effective piezoelectric coefficients. For the latter, two types were defined: an engineering type corresponding to the average value along the IDE, which can directly be compared to coefficient of a parallel plate electrode (PPE) capacitor and a second one that approximately yields the idealized coefficient governing between the electrode fingers. The IDE structures were experimentally compared with PPE structures of identical film thickness. The resulting coefficients were of opposite sign, as expected. In spite of a much better polarization loop, the IDE device showed a lower average piezoelectric stress. The estimated peak value between the fingers was about the same as in the PPE device, corresponding to about 20 C m(-2). Nevertheless, the result is very promising for cases where compressive piezoelectric stresses are required and for preventing cracking due to large piezoelectric tensile stresses in PPE systems.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

JMM_Chidambaram_2015.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

1.41 MB

Format

Adobe PDF

Checksum (MD5)

9f3f010562ee13d84774b00d26a18947

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés