Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Self-Assembly of a Giant Molecular Solomon Link from 30 Subcomponents
 
research article

Self-Assembly of a Giant Molecular Solomon Link from 30 Subcomponents

Schouwey, Clément  
•
Holstein, Julian J.
•
Scopelliti, Rosario  
Show more
2014
Angewandte Chemie International Edition

The synthesis of topologically complex structures, such as links and knots, is one of the current challenges in supramolecular chemistry. The so-called Solomon link consists of two doubly interlocked rings. Despite being a rather simple link from a topological point of view, only few molecular versions of this link have been described so far. Here, we report the quantitative synthesis of a giant molecular Solomon link from 30 subcomponents. The highly charged structure is formed by assembly of 12 cis-blocked Pt2+ complexes, six Cu+ ions, and 12 rigid N-donor ligands. Each of the two interlocked rings is composed of six repeating Pt(ligand) units, while the six Cu+ ions connect the two rings. With a molecular weight of nearly 12kDa and a diameter of 44.2 angstrom, this complex is the largest non-DNA-based Solomon link described so far. Furthermore, it represents a molecular version of a stick link.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Angew-2014-Schouwey_1.pdf

Access type

restricted

Size

899.95 KB

Format

Adobe PDF

Checksum (MD5)

fe0e6bd76f27feaa5a606bb60f0859d8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés