Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Teapot: A Domain-Specific Language for Writing Cache Coherence Protocols
 
Loading...
Thumbnail Image
research article

Teapot: A Domain-Specific Language for Writing Cache Coherence Protocols

Chandra, Satish
•
Richards, Bradley
•
Larus, James R.
1999
IEEE Transactions on Software Engineering

In this paper, we describe Teapot, a domain-specific language for writing cache coherence protocols. Cache coherence is of concern when parallel and distributed systems make local replicas of shared data to improve scalability and performance. In both distributed shared memory systems and distributed file systems, a coherence protocol maintains agreement among the replicated copies as the underlying data are modified by programs running on the system. Cache coherence protocols are notoriously difficult to implement, debug, and maintain. Moreover, protocols are not off-the-shelf, reusable components, because their details depend on the requirements of the system under consideration. The complexity of engineering coherence protocols can discourage users from experimenting with new, potentially more efficient protocols. We have designed and implemented Teapot, a domain-specific language that attempts to address this complexity. Teapot's language constructs, such as a state-centric control structure and continuations, are better suited to expressing protocol code than those of a typical systems programming language. Teapot also facilitates automatic verification of protocols, so hard to find protocol bugs, such as deadlocks, can be detected and fixed before encountering them on an actual execution. We describe the design rationale of Teapot, present an empirical evaluation of the language using two case studies, and relate the lessons that we learned in building a domain-specific language for systems programming.

  • Details
  • Metrics
Type
research article
DOI
10.1109/32.798322
Author(s)
Chandra, Satish
•
Richards, Bradley
•
Larus, James R.
Date Issued

1999

Published in
IEEE Transactions on Software Engineering
Volume

25

Issue

3

Start page

317

End page

333

Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
VLSC  
Available on Infoscience
December 23, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/98774
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés