Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A Low-Rate Identification Method for Digital Predistorters Based on Volterra Kernel Interpolation
 
research article

A Low-Rate Identification Method for Digital Predistorters Based on Volterra Kernel Interpolation

Singerl, P.
•
Koeppl, H.
2007
Analog Integrated Circuits and Signal Processing

A novel identification and digital predistortion scheme of weakly nonlinear passband systems such as RF power amplifiers (PA) is presented. It is well known that for the identification of weakly nonlinear systems, despite the spectral regrowth, it suffices to sample the input-output (I/O) data of the system at the Nyquist rate of the input signal. Many applications such as linearization (digital predistortion) and mixed signal simulations require system models at a higher sampling rate than Nyquist. Up to now the construction of such high-rate predistorters has been done by oversampling the corresponding I/O data. This leads to high computational complexity, ill-posedness of the estimation, and high demand on the analog-to-digital converter (ADC) sampling rate for the implementation. This paper discusses an efficient way to obtain high-rate predistorters from low-rate system models and shows the validity of the proposed scheme for a 5th-order complex baseband PA model, where adjacent channel power suppression of 20 dB is achieved.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

low_rate_identification.pdf

Access type

openaccess

Size

257.43 KB

Format

Adobe PDF

Checksum (MD5)

6a4315710c6fb8fefd91411a3a552b76

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés