Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. No-Regret Learning from Partially Observed Data in Repeated Auctions
 
research article

No-Regret Learning from Partially Observed Data in Repeated Auctions

Karaca, Orcun
•
Sessa, Pier Giuseppe
•
Leidi, Anna
Show more
2020
IFAC-PapersOnLine

We study a general class of repeated auctions, such as the ones found in electricity markets, as multi-agent games between the bidders. In such a repeated setting, bidders can adapt their strategies online using no-regret algorithms based on the data observed in the previous auction rounds. Well-studied no-regret algorithms depend on the feedback information available at every round, and can be mainly distinguished as bandit (or payoff-based), and full-information. However, the information structure found in auctions lies in between these two models, since participants can often obtain partial observations of their utilities under different strategies. To this end, we modify existing bandit algorithms to exploit such additional information. Specifically, we utilize the feedback information that bidders can obtain when their bids are not accepted, and build a more accurate estimator of the utility vector. This results in improved regret guarantees compared to standard bandit algorithms. Moreover, we propose a heuristic method for auction settings where the proposed algorithm is not directly applicable. Finally, we demonstrate our findings on case studies based on realistic electricity market models.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.ifacol.2020.12.029
Author(s)
Karaca, Orcun
Sessa, Pier Giuseppe
Leidi, Anna
Kamgarpour, Maryam  
Date Issued

2020

Published in
IFAC-PapersOnLine
Volume

53

Issue

2

Start page

14

End page

19

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
SYCAMORE  
Available on Infoscience
December 1, 2021
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/183310
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés