Integrating point glacier mass balance observations into hydrologic model identification
The hydrology of high mountainous catchments is often predicted with conceptual precipitation-discharge models that simulate the snow accumulation and ablation behavior of a very complex environment using as only input temperature and precipitation. It is hereby often assumed that some glacier-wide annual balance estimates, in addition to observed discharge, are sufficient to reliably calibrate such a model. Based on observed data from Rhonegletscher (Switzerland), we show in this paper that information on the seasonal mass balance is a pre-requisite for model calibration. And we present a simple, but promising methodology to include point mass balance observations into a systematic calibration process. The application of this methodology to the Rhonegletscher catchment illustrates that even small samples of point observations do contain extractable information for model calibration. The reproduction of these observed seasonal mass balance data requires, however, a model structure modification, in particular seasonal lapse rates and a separate snow accumulation and rainfall correction factor. This paper shows that a simple conceptual model can be a valuable tool to project the behavior of a glacier catchment but only if there is enough seasonal information to constrain the parameters that directly affect the water mass balance. The presented multi-signal model identification framework and the simple method to calibrate a semi-lumped model on point observations has potential for application in other modeling contexts.
schaefli_huss2011.pdf
openaccess
2.4 MB
Adobe PDF
925197d268feba7ac221d0049e6c2a51
schaefli_huss2011Supp_1.pdf
openaccess
491.57 KB
Adobe PDF
be6fae15ccddb736bb3f317595bbb4fa